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Abstract Topology Optimization (TO) is an alternative approach to designing
structural parts that produce highly efficient designs by catering to a particular set
of initial constraints. This approach to design effectively reduces material waste and
provides for lighter structures by creating designs composed of unique geometries
that perform similarly to the designs created by humans — but at a fraction of
the volume and mass. There are many different TO methods that can accomplish
this, however, with TO being recently developed within the past few decades, there
is still some debate to which TO method produces the best results. This paper
explores two common TO methods: the solid isotropic with material penalization
(SIMP) method and the bi-directional evolutionary structure optimization (BESO)
method. Each method shall be utilized to design a cantilever beam at several target
volumes — a constraint common in TO methods, in which limits the amount of
material used within a specific volumetric design space. The structures from each
respective TO method shall then be compared through use of static load testing to
determine where each structure encounters the highest amount of stress, strain, and
displacement. Each structure shall then be tested to its limit by applying increasing
amount of mass to determine it’s Euler critical load. Using these metrics, it has
been found that the BESO method may be more effective for cantilever designs at
volume fractions below 35%, whereas the SIMP method may be better for designs
at volume fractions above 35%.
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Introduction

For millenia, we as humans have created things — from the simple arrow that helped
us hunt our food, to the boats that carried us across seas, and now the spacecraft
that will carry us to space. We as humans have come a long way and we are always
looking to improve the things we create. Traditionally, the method in which we
create things has been pretty similar for the past few centuries — we come up with
an idea, we design it, and test it in some way.! This process is outdated and often
times, things could have been designed better. So how can we improve upon this
process? Is there a way to use software to ultimately help us create the “most
optimal” solution for a design that relies on a certain set of criterion?

The answer is yes. There is an emerging technique, known as topology opti-
mization (TO), which does exactly that. TO methods essentially allow us to take
a certain set of criterion, such as: a target volume, boundary constraints, and load
information to ultimately create the most “optimal” design for a part. Using the
criterion, TO methods can redistribute a design’s material layout in order to con-
form to the requirements specified by the engineer, while enhancing certain aspects
of the design, such as structural stiffness. (Xia, 2018b). TO is still a rather new con-
cept, with most development taking place in the past few decades. However, with
new manufacturing techniques, such as 3D printing, many engineers are ditching the
“traditional” way of design and moving to TO methods in order to produce highly
efficient designs that are lighter and will perhaps be cheaper to produce in the fu-
ture. TO methodology has been proven to be especially important in the aerospace

industry, as it costs anywhere from $5,000.00-10,000.00 to send one pound up into

!There has been improvements with the emergence of CAD software, but it is relatively a similar
process — you come up with an idea, model it, simulate and test, and repeat the process until the
design meets the constraints.



Figure 1.1: AutoDesk moon lander for NASA mission (Leonard, 2018). The
organic cells cut from the moon lander provide a 30% mass reduction in comparison to
old moon lander designs, which would never had been possible through human design.

space. AutoDesk has recently taken an initiative to build software for this technique
in order to produce the most economical parts for the aerospace industry.? Seen in
Figure 1.1, one can see a moon lander design generated by AutoDesk’s software.
You may notice that the structure is organic-like. These organic-like cells that are
cut from structure have effectively allowed AutoDesk to reduce the mass of the tra-
ditional moon-lander by approximately 30%. This lead to a massive cost reduction
into sending this piece into space.

There are several different methods in TO in which could have helped accom-
plished a structure like Figure 1.1, and therefore it is important to study how dif-
ferent TO methods compare to one another in order find the “best” solution. This
paper explores a comparative analysis between the resulting cantilever designs from
two different finite-element analysis based TO methods: the solid isotropic with
material penalization (SIMP) method and the bi-directional evolutionary structure
optimization (BESO) method. Each method will be utilized in order to generate a
design for a cantilever beam at several different volume fractions. The paper shall
then highlight which method produces a more “effective” cantilever beam struc-
ture by conducting static load scenarios using driving parameters such as structure
displacement, stress, strain, and Euler critical load. With this information, we
can ultimately use physics in order to help aide us in understanding how each TO
method performs. In the following subsections, a background in stress, strain, and
finite element analysis will be given to help the reader better understand the results

in following sections.

2 AutoDesk more realistically uses what is known as “generative adversarial networks” — a form
of neural network that is fueled on topology optimization data.
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Pressure Tension Shear

Figure 1.2: Surface forces: pressure, tension, shear. There are three different surface
forces in which include: pressure, tension, and shear. Pressure acts normally inward to the
surface, tension acts normally outward to the surface, and shear acts tangentially upon
the surface.

1.1 Stress and Strain

In order to better understand the underlying physics of these structures, a back-
ground in material stress and strain is needed. In typical statics problems a structure
is often analyzed when a load is set upon it in a particular location. These loads
act upon the surface of the structure and are otherwise known as surface forces.
These surface forces are distributed over a given area of the structure and produce
what is known as stress. There are three different surfaces forces that cause stress,
which include: pressure, tension, and shear. These are illustrated in Figure 1.2. The
relationship between surface forces and area can be expressed by Equation 1.1 to
give us the equation of stress, denoted by o, where Fj,, fqc is the force acting on
the surface and A is the area of that surface.
Fourtace

o= (1.1)

As surface forces act upon the structure, they cause deformations that lead to
the structure either stretching or compressing in a particular direction. In order to
quantify these deformations we look at the fractional change in the dimensions of the
structure, otherwise known as strain, denoted by €. For three-dimensional systems,
we typically look at the overall change in the volumetric dimensions of the body
or structure. Equation 1.2 represents this relationship, where AV is the change in
volume of the body and V' is the volume of the body. (Taylor, 2005).

AV
= 1.2
6 ‘) ( )



The relationship between stress and strain represents a form of Hooke’s Law,
where € represents the displacement and o represents the restoring force over an
area of material. This is represented below in Equation 1.3, which describes how
the ratio between stress and strain form what is known as the elastic modulus —
the measure of the ability of a material to withstand changes in dimensions when
put under stress. The elastic modulus is known by different names based on which
type of surface force is acting on the system: young’s modulus for tensile stress,

bulk modulus for compression stress, and shear modulus for shear stress.

E= % (1.3)

In statics problems we also look at the strain energy density, the amount of
work per unit volume in which the structure does in resistance to the load set upon
it. This takes on a very similar form to the potential energy of a spring, as seen in
Equation 1.4 and is calculated by TO methods in order to quantify the deformations
in either an element or the total structure. This ultimately is used to drive the TO
method’s process of removing material from the design. This is extremely crucial,
as it helps determine where to redistribute material on the structure in order to
maximize stiffness - the measure of resistance to deformations caused by surface

forces.

P(e) = %E62 (1.4)

1.2 Finite Element Analysis

Pivoting from the information given for stress and strain, we can now use these
metrics to determine how a structure performs. In order to determine these metrics,
we need to solve the system using what is known as finite element analysis (FEA).
FEA is a way of representing a system with infinitesimal elements. Each TO method
that is compared in this paper utilizes a grid system composed of what are known
as eight-node hexahedral elements (H8). An H8 element is illustrated in Figure 1.3.
Each node within the H8 element is able to move in the alpha, beta, and gamma
direction, giving each H8 element a total of twenty-four degrees of freedom. When
a load is placed on the structure, these nodes are displaced, causing the system to
deform. The way we calculate these nodal displacements is done through what is

known as, “the direct stiffness method”. We will ultimately use these displacements



Coordinates of Hexahedral Element

Node 1: (-1,-1,-1)
Node 2: (1,-1,-1)
Node 3: (1,1,-1)
Node 4: (-1, 1, -1)

B Node 5: (-1,-1,1)
Node 6: (1,-1,1)
Node 7: (1,1, 1)
Node 8: (-1,1,1)

Figure 1.3: Eight nodal coordinate system of hexahedral element. Hexahedral
elements are composed of six faces and eight nodes connected at each vertices. A common
way we represent the state of these nodes is by comparing them to what is known as the
natural coordinate system — centered at the origin of the element.

later in order to calculate mean compliance, which will help inform the TO material
removal process.

The direct stiffness method works on the premise of Equation 1.5, which describes
a form of Hooke’s Law, where K is the stiffness tensor, u is the displacement tensor,

and f is force tensor.
Ku=f (1.5)

Each TO method in the beginning of it’s optimization process specifies a known force
at particular locations within the system. These values are then placed in the force
tensor in corresponding spots to where they are located in the system, otherwise
known as the “physical coordinate system”. In order to calculate the displacements,
according to Equation 1.5, we also need to formulate the stiffness matrix, which is
a system of linear equations that represents how each element resists in response
to an applied force. The way we represent the stiffness matrix for a H8 element is
given through Equation 1.6, where B; represents the strain matrix, D represents the
elasticity matrix, B represents the transposed strain matrix, and det(.J) represents
the determinant of the Jacobian, which represents mapping between elements in the
“natural coordinate system”, as described in Figure 1.3, to the physical coordinate

system — the coordinate system of the entire system (Liu, 2014)

1 1 1
K. = / / / B;DB}'det(J) da dBdy (1.6)
—-1J-1J-1
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To further dissect some of the components in Equation 1.6, we can represent these
variables through certain approximations. This is typical of most FEA methods and
although they do not utilize exact solutions to determine how a structure performs,
approximations to how the system acts is sufficient enough for us to generalize
different types of scenarios. In order to define the strain matrix of an H8 element,
we use what is known as “Lagrange shape functions”. Shape functions are functions
that help interpolate a solution between each nodal point in the element in the
natural coordinate system. The software written for the BESO method in future
sections, relies on linear interpolation, as expressed by the functions in Appendix A.
By looking at the change of these shape functions with respect to the «, £, and ~
directions, we ultimately extrapolate the strain matrix through the approximation
as described in Equation 1.7 (Liu, 2014).%

dN1 dNg
w0 0 .. 52 0 0
dNy dNg
0 % 0 .. 0 & 0
dN; dNg
L |0 0o o0 0 4 )
e lawm am Ny dNs :
s da Tt dp da
0 ¢ M 0 9Ns dNs
dy s dy s
Ny dNy dNg dNs
L dvy do dry da |

In order to formulate Equation 1.6, we also need the elasticity matrix, which is
defined by the material properties of the system and Poisson’s ratio. For an HS8
element, this is given by Equation 1.8, where E represents the elastic modulus and
v is Poisson’s ratio (Liu, 2014). The Poisson ratio factors account for the ratio of
the proportional decrease in a lateral measurement to the proportional increase in

length of a particular direction for a material that is elastically stretched.

1—v v 0 0 0 0
v 1—-v v 0 0 0
_ E X 0 v 1—-v 0 0 0 (1.8)
(1+v)(1—2v) 0 0 w9 0
0 0 0 =2 0
00 0 0 5z

3These six-dimensional matrices, as seen in the following equations, are represented in Voigt
notation, which translates symmetric tensors to six-dimensional vectors.
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In order to map the stiffness matrix from the natural coordinate system to the

physical coordinate system in Equation 1.6, the det (J) factor is used (Liu, 2014).

This is done by taking the location values from the physical coordinate system and

multiplying them with the change of the shape functions in each location of natural

coordinate system, represented by Equation 1.9. With all variables in Equation 1.6

defined, the stiffness matrix for the element is formulated. With this value, we can

then calculate the displacements of all the nodes in each element through Equation

1.5. These displacements will then be used to determine the mean compliance,

which will be used to inform the TO material removal process. This process will be

described in the following section.
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2

Topology Optimization

2.1 Overview of Topology Optimization

This section shall give an overview of the SIMP and BESO TO methods to give a
better understanding of how each method redistributes material based on FEA re-
sults. All TO methods have two goals in mind when solving structural optimization

problems: find the minimum mean compliance and fit within a given target volume.

N
1

The mean compliance of the entire structure can be represented by equation 2.1,
where u; represents the elemental displacement matrix, K; is the stiffness matrix of
the element, u! is the transpose of the elemental displacement matrix, and N is the
number of elements in the structure Huang (2008). As we minimize this value —

there are fewer deformations in the structure, resulting in a stronger structure *.

N
VE= Vir =0 (2.2)

Alongside this, TO methods also try to fit within a given target volume. This
value is specified at the beginning of the optimization process. Each TO methods
redistributes material in order to try to satisfy Equation 2.2, where V* represents
the target volume, V; represents the elemental volume, x; represents the design vari-
able that determines whether that element exists or not in the current design, and

N is the number of elements in the structure. TO Methods iterate until the volume

!Compliance essentially represents the strain energy density as described by Equation 1.4. This
tells us how much strain energy there is in the system.

13
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Figure 2.1: Two dimensional slice of filter radius (Wang et al., 2011). A filter
radius, commonly known as r,;, encapsulates a certain amount of area or volume within
a structure. From the center of each element, TO methods look 7, distance out. Within
this circle or sphere, certain nodes with sensitivity values are encapsulated. Based on the
average of these values we can determine how stiff the system is in this region is.

condition is met and then continues to redistribute material in order to minimize
the compliance of the entire structure. TO methods typically determine how to
redistribute based on the principle of neighboring elements. At the beginning of
the optimization process, the user specifies what is known as the filter radius. This
value determines how far the optimization methods should look in terms of num-
ber of elements out. This helps determine whether certain regions in the structure
need more support or could potentially be cut. Figure 2.1 shows a two-dimensional
slice of what a filter radius looks like. During the removal or addition process in
topology optimization, each element looks a certain filter radius outward. In the
two-dimensional case we see through Figure 2.1 that certain nodes are encapsu-
lated in this region. We average each of these nodal sensitivity values to determine
how stressed this area is and use this information in the decision making process.

However, each topology optimization method redistributes material in its own way.

2.2 Solid Isotropic with Material Penalization (SIMP)

The SIMP method views the design variable, x;, as a continuous value, that allows
for what I call partial elements. The design variable is allowed to have a continuous

density value that follows the inequality expressed by Equation 2.3, where x,,;, is

14



the minimum element density allowed and z; is the element density.

Any design variable that falls below the z,,;, value is removed from the design and
becomes known as a void element. Any design variable that converges to the value
1 becomes known as a solid element. Anything else in between is a partial element.
In order to determine these design variables at every iteration, the SIMP method
calculates sensitivity values. This is done by taking the derivative of the mean

compliance, such that

dc
a[[’i

where p represents a penalty factor (typically 2 or 3)%, z; represents the design

— pat ] K (2.4)

variable of the element, u! represents the transposed displacement matrix of the
element, K; represents the stiffness matrix of the element, and wu; represents the
displacement matrix. Using this value, we can calculate the amount of volumetric
change in dimensions of the element by calculating the strain through Equation
2.5, where \7! is a Lagrangian multiplier determined through a bisection method

(M. P. Bendsge, 1999).
Oc

a&:i

Using this change in mean compliance, we can then update the elements through

B’i == )\71

(2.5)
Equation 2.6, which represents the Optimality Criteria described by M. P. Bendsge
(1999).

N

i

N

max(Tmin, ¥ —m) if 2N B! < maz(zmin, v¥ —m)

oM = Smin(Lad +m)  if min(l,z) +m) < 2N B] (2:6)

2N B otherwise

where 2V represents the design variable at iteration N, m is the positive move
limit — the most the value can change per iteration, 1 represents a numerical damp-
ing coefficient (typically equal to 0.5), and B; is elemental strain. With the sensi-
tivity values being based upon the change of compliance with respect to the design
variable, it has been noted by Huang (2008) to sometimes converge to local mini-

mums — which may cause for less than optimal designs.

2This intrinsically helps the design to a fully solid design.
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2.3 Bi-directional Evolutionary Structure Opti-
mization (BESO)

The bi-directional evolutionary structure optimization (BESO) is a bit different in
nature than the SIMP method. The BESO method was an adaptation from the
evolutionary structure optimization (ESO) method, which was first developed by
X. Y. Yang and Querin. (1999). The term “bi-directional” implies that material
can be both added and subtracted at the same time, meaning inefficient material is
removed from the design and material is added in places needed of more support.
This allows the method to redistribute material in the design where it may have
previously pre-maturely subtracted it. The BESO method also works on the premise
of sensitivity values. Each sensitivity value is the mean compliance divided by the
elemental volume, as seen in Equation 2.7

el K

o; =

T (2.7)

u; is the displacement matrix of the element, u! is the transposed displacement
matrix of the element, and K; is the stiffness matrix for that given element, xz; is
the design variable, and p is the penalty factor (typically 2 or 3) used for helping
the design converge. These sensitivity values are compared to a threshold value, as,,
the mean value of sensitivity values across the nodes within the given filter radius
of the element. If the design variable is 1, then the element exists in the design,
if the element is 0.001 it has the potential to to be added back into the design, if
the design variable is less than 0.001 it is completely removed from the design —

continuously becoming smaller and smaller each iteration.

v — 1 if a; > as, (2.8)
0.001 if a; < ayy,

This method continuously subtracts material from the structure at an evolutionary
rate, the rate at which elements are removed from the structure. Once the structure
is at its target volume, V*, it still can continue to redistribute material without
changing the overall volume of the structure, adding and subtracting material for
optimum results. However, it has been noted in literature that by adding a penal-
ization factor to the design variable causes for more convergent solutions (Huang,
2008).
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3

Computational & Analytic Results

3.1 Validation of Finite Element Analysis

7, ]
x
P D
v

L

< >
~<t =

A\ 4

Figure 3.1: Cantilever beam validation test setup. (Augarde, 2007) This represents
a two-dimensional model of the Timoshenko cantilever beam described by Auguarde. The
beam consists of length, L, a height, D, and shear force, P, in the downwards direction.

For the structures generated by the BESO method, FEA software was written in
order to define the displacements, stress, and strain in the system. The FEA software
works on the premise of Lagrange shape functions, as described in Section 1.3. In
order to validate this approximation, we will compare the displacement results with
an analytic solution of the cantilever beam as described by Augarde (2007). The
cantilever described by Augarde represents a two-dimensional cantilever beam of
depth, D, length, L, and unit thickness as seen in Figure 3.1. A load, P, is set upon
the end of the beam in order to deform the structure. To quantify the deformation in
the y-direction, we look at u,, as described in Equation 3.1, where v is Poisson’s ratio
and [ is the moment of area. This beam theory is derived from the Euler-Bernoulli
Beam Theorem.

D2z

P
Uy:_6E_I 3yy2(L_x>+(4_|_5Z/)T—|—<3L—x):c2 (3.1)
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Figure 3.2: Validation test scenario: FEA Setup. The y-displacement from the
top row of nodes that are centered with the load will be used to compare with the y-
displacement of the Timoshenko beam model.

The FEA software written for the BESO method solves only three-dimensional
systems. In order to compare this to the Timoshenko model, we shall use a simple
test scenario as shown in Figure 3.2. This Figure shows a cantilever beam under a
given load composed of 80 elements (20 x 2 x 2). Using this model, we can compare
the y-displacements to the Timoshenko beam model to see how accurate the FEA
solution is. To give some physical context, the defined parameters that were used
in this validation test is given below in Table 3.1, which describes a steel cantilever

beam with a given load of 1000 N set up on it.

Length (mm) 20

Depth (mm) 2
Load (N) 1000
Elastic Modulus (25) | 200e9

Poisson’s Ratio (v) 0.4

Table 3.1: Validation test parameters: FEA vs. Analytic Solution

Under this scenario, it was seen in Figure 3.2 that the displacements predicted
by the FEA software had deflected further in the y-direction in comparison to the
Timoshenko analytic solution. This tells us that although the FEA predicted the
correct sort of shape of the displacement and direction in which the beam shall be
displaced, it over approximated the amount of displacement in the system. As you
get further towards the end of the beam, the error margin of this approximation

continues to increase.’

L Although the FEA software has a significant error margin in comparison to the analytic solu-
tion, it should suffice for the optimization methods.

18



1B ¥-Direction Displacement of Cantilever Beam
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Figure 3.3: Y-displacement comparison of analytic solution and FEA solution.
This shows the displacement of a cantilever beam from both the Auguarde analytic solution
compared to the FEA solution as it bends in the y-direction. From the comparison, we see
that the minimum error in the FEA approximation is 4.28 x 10~ m and the maximum
error is 4.65 x 1079 m. Relative to the solution this error in displacement ranges from
3.93% to 27.18%, with the average relative error being 16.50%.

3.2 Topology Optimization Results

To compare the SIMP and BESO method fairly, a common scenario shall be used to
design a cantilever beam. The common parameters for this validation scenario can
be seen in Table 3.2. We will compare several different structures at various volume
fractions in Section 3.3, but for the sake of brevity this paper shall only discuss the
optimization process of structures generated with a target volume of 15%. For each
TO method, mean compliance over time shall be analyzed to how effective each
method is during its optimization period. This analysis shall show pivotal changes

in design at particular iterations to compare each method during its optimization

process.
Length 40
Width 12
Height 20

Target Volume | 15%
Elastic Modulus | 200e9
Filter radius 1.5

Table 3.2: Design scenario: Common initial parameters
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3.2.1 SIMP Method Optimization Results

SIMP Optimization Process - 15% Volume Fraction
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Figure 3.4: SIMP Method Optimization Process. The optimization process was
completed relatively quickly — converging to a solution in less than fifty iterations. From
the graph, it shows the method was relatively conservative when subtracting material in
the first half of the optimization process, until it quickly subtracts a lot of material. This is
due to the move limit being fixed for the first fifteen iterations of the optimization process
— preset by the ToPy (Hunter, 2009). The final structure had a mean compliance of 9.16
Nmm, resulting in a structure as seen in Figure d.

Figure 3.4 shows the optimization process results for the SIMP method that
was generated using the ToPy Python library (Hunter, 2009). For each iteration,
a small percentage of material is subtracted from the overall design based upon
the change in mean compliance, as described in Section 2.3. In the beginning of
the optimization process, one notices that the overall change in volume fraction is
relatively small. However, as we see from point b to point ¢ in Figure 3.4 there is
a rapid change in the volume fraction, where the overall change in volume is quite
high — this corresponded to a rise in compliance. As the process converged to the
target volume we see the mean compliance becomes minimized. Higher resolution

multi-dimensional images of this structure can be seen in Section 3.2.3.
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3.2.2 BESO Method Optimization Results

BESO Optimization Process - 15% Volume Fraction
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Figure 3.5: BESO Method Optimization Process. The BESO method took longer
to come to an optimal solution — 188 iterations based off an evolutionary rate of 1%
volume fraction per iteration. The resulting mean compliance was 9.03 Nmm, resulting in
a structure that looks similar to Figure d. This behavior in the BESO method is consistent
with literature described by Fuvolutionary Topology Optimization of Continuum Structures
(Huang, 2008), such that as volume fraction decreases, mean compliance increases.

Figure 3.5 shows the optimization process for the BESO method that was gen-
erated by software, which can be found at this link. This process is a little more
straightforward in comparison to the SIMP method, as the volume fraction is deter-
mined by a fixed evolutionary rate. This means instead of determining how much
material to subtract from the structure based on the change in mean compliance
of the structure, it subtracts material at fixed rate. However, instead of just sub-
tracting material like the SIMP method, the BESO method redistributes or “adds”
material to support weaker areas, so long as the total volume fraction is reduced
by the evolutionary rate. This feature is not inherent to the SIMP method, which
might prematurely subtract material in areas that might prove to be weak in future

iterations.
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3.2.3 3D Voxel Renderings of SIMP vs. BESO

P P_e.

a) SIMP (X2) (Y+) b} BESO(Z)(x+)

I I

c) SIMP (YZ) (X-) d) BESO(YZ) (X-)
e) SIMP (XY) (Z+) f) BESO (XY) (Z+)
g) SIMP (XZ) (Y-) h) BESO (XZ) (Y-)

i) SIMP (YZ) (X+) j) BESO (YZ) (X+)
k) SIMP (XY) (Z-) 1) BESO (XY) (Z-)

Figure 3.6: Comparison of SIMP and BESO 3D Voxel Renderings The resulting
structures have relatively similar features, including an overarching structure as seen in
Figure a, b, g, and h. However, we see that the SIMP method more aggressively subtracted
material from the interior portions of it’s design, leaving more material on the top and
bottom of the design as seen in Figures e , f, k, and [ . Both structures had I-beam shaped
back features — as seen in Figures ¢ and d — this is reassuring that human design isn’t
that bad. It is also noted that the BESO method produced slightly asymmetrical designs
most notably in front and back views.
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3.2.4 Qualitative Discussion of BESO vs. SIMP Results

From the TO results highlighted in Sections 3.2.1 and 3.2.2, we see that the TO
methods converged to relatively similar structures. Both structures had the same
overarching shape with material removed near the fixed portion of design as seen
in Figure 3.6a, 3.6b, 3.6g, and 3.6h. Both structures reduced to a I-beam shaped
structure near the back of the design as seen in Figure 3.6¢ and 3.6d. This is quite
relieving to see that human design matches what these methods generate. Each
structure has interior cuts in order to reduce volume, however each method did it
in its own way. The BESO method seems to make smaller cuts and remove more
material from the top of the structure, whereas the SIMP method subtracted a lot
more interior material in the interior portions of structure causing a bigger gap. The
BESO method had small asymmetries as seen in Figure 3.6j and 3.6d. Each facet of
these designs will be analyzed in further sections to determine whether each method

made the correct decision in redistributing material in specific areas.

3.3 Static Load Analysis of SIMP vs. BESO

In order to fairly compare each structure generated by the SIMP and BESO method-
ologies, a known finite element analysis suite, AutoDesk, was used to simulate static
load scenarios. In order to create a valid mesh in AutoDesk, each structure had to
be modified to be a smoothed surface. This was done by applying a Poisson Surface
Reconstruction (PSR) filter. The modified structures can be seen Appendix B and
can be compared with the voxel renderings as seen in Figure 3.5. Although it’s not
ideal to compare modified structures, a large effort was put into ensuring the struc-
ture’s design was preserved. Each structure underwent a static load for the scenario
that it was designed for, as described in 3.2. From this analysis, a comparison of the
set of criterion below in the list will be utilized to determine which TO methodology

produced a better structure.

1. Von Mises Stress
2. Strain

3. Displacement

4. Euler Critical Load
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Max Avg. Max Avg.
TO Method | Max Avg. | Stress | Stress | Displacement | Displacement
Vol. Frac. Strain | Strain | (MPa) | (MPa) (mm) (mm)
BESO - 15% | 3.28E-5 | 3.08E-6 | 4.392 | 0.561 4.89E-3 1.39E-3
SIMP - 15% | 2.23E-5 | 5.30E-6 | 3.988 | 0.764 5.65E-3 2.35E-3
BESO - 25% | 2.80E-5 | 2.91E-6 | 3.687 | 0.476 3.16E-3 9.21E-4
SIMP - 25% | 1.85E-5 | 3.6E-6 | 2.526 | 0.612 4.60E-3 2.24E-3
BESO - 35% | 1.19E-5 | 3.41E-6 | 1.735 | 0.477 3.47E-3 1.26E-3
SIMP - 35% | 3.09E-5 | 3.49E-6 | 4.246 | 0.548 3.78E-3 1.70E-3
BESO - 45% | 8.10E-6 | 2.52E-6 | 1.269 | 0.362 2.7T1E-3 9.24E-4
SIMP - 45% | 1.35E-5 | 2.07E-6 | 1.803 | 0.308 2.20E-3 8.81E-4
BESO - 55% | 1.18E-5 | 1.93E-6 | 1.641 | 0.273 2.23E-3 7.63E-4
SIMP - 55% | 1.17E-5 | 1.19E-6 | 1.532 | 0.273 1.83E-3 7.2E-4

Table 3.3: Quantitative Results from Static Load Analysis This table represents
the results from the AutoDesk static load test for each method and volume fraction. From
initial glance it is evident that the BESO method outperforms the SIMP method in terms
of average stress, strain, and displacements for volume fractions below 35%, whereas the
SIMP outperforms the BESO method for volume fractions 45% and above.

The results from the static load scenarios are shown in Table 3.3. Each structure
generated by both the BESO and SIMP method were put under a 1000 N load, in
a similar fashion to the FEA validation scenario in Figure 3.2. Then each structure
was tested to its limits, until the structure buckled — giving us the Euler Critical
load. To conduct the simulation, each structure was converted to a mesh consisting
of 2,000 uniform faces for consistency. From initial glance, it seems as though each
structure for the most part linearly continues to improve in terms of stress, strain,
displacement — as we see these number effectively decrease as more material is
added to the structure. However, it must be noted that with the mesh conversion,
there may be some slight effects in the performance of the structure. We may
notice that specifically thin connections in the the lower volume fraction designs
may encounter higher areas of stress than they were in their voxel form. To further
investigate and understand the results listed in Table 3.3, color maps of stress, strain,
and displacement for each structure will be shown in the following sections. This
ultimately will help us understand where each structure is weakened and help us
determine if structural flaws could have influenced some of the quantitative results

as seen in Table 3.3.
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3.3.1 Von Mises Stress and Strain Analysis

Von Mises Stress and Strain Comparison - BESC and SIMP
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Figure 3.7: Average Stress and Strain vs. Volume Fraction. The BESO method
showed high areas of stress in low volume fractions — particular in the thin connections.
However, on average it outperformed the SIMP method slightly for lower volume fractions.
We see the SIMP method do slightly better in higher volume fractions — both methods
have similar average stress for the 55% volume fraction optimization.

Table 3.4 shows the Von Mises stress map for each structure generated by the
BESO and SIMP methods at different target volumes. With these stress maps, we
can view where the structure is weakest. One may notice that the greatest amount
of stress across the structures are the thin connections, most notable in the smaller
volume fractions of the SIMP and BESO design structures. It shall be noted that
when these structures are converted to a mesh from the PSR structures, they often
are reduced by small volume. This may lead to connections to become thinner than
they were in the original design. This causes the structure in these areas to feel
higher amounts of stress than they normally would.

We can also look at the average amount of stress across each structure. If we
plot the average Von Mises stress values for each structure at each volume fraction,
as seen in Figure 3.7, we can see that the BESO on average has a lower stress and
strain profile in comparison than the SIMP method for value fractions below the 45%
volume fraction mark. At this point, the SIMP on average performs better. This
potentially could tell us that the SIMP method works for higher volume fraction,

whereas the BESO works better for lower volume fractions.
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Volume Fraction SIMP BESO
15%
25%
35%
45%
[MPa] 0.011 W 1 1.269
55%
[MPa] 0.006 I W 1.532 [MPa] O I W 1.641

Table 3.4: BESO vs. SIMP Von Mises Stress Comparison. This table highlights
the stress simulation results from AutoDesk for each method and target volume done. We
see that there are notable areas within the structure that suffer higher amounts of stress,
namely in areas where connections are thin as seen in lower volume fractions.
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3.3.2 Displacement Analysis

Volume Fraction SIMP BESO

15%

25%

[mm] 0 B M 0.003157

e

35%

45%

55%

[mm] 0 I W 0.001825

Table 3.5: BESO vs. SIMP Average Displacement Comparison. This table shows
the results from the average displacement analysis results from AutoDesk. The SIMP at
lower volume fractions seemed to encounter higher values of displacement in comparison to
the BESO method. The SIMP however, seems to feel less displacement at higher volume
fractions.
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Comparison of Avg. Displacement per Volume Fraction
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Figure 3.8: Average Displacement for each TO method and volume fraction.
The SIMP on average had much higher displacements for low volume fractions. However,
we start to see the SIMP perform very similar higher volume fractions.

Comparing the average displacements of the structures in Figure 3.8a we also
notice that the trend from the stress and strain graphs are consistent. However, the
shape of this graph is slightly different, which may suggest some sort of weighted
average was used in the calculations calculated by AutoDesk. The average displace-
ments are much larger for the SIMP method in comparison to the BESO method
for volume fraction of 15-35%. It is only until 45-55% where the SIMP barely per-
forms better than the BESO method. The displacements can be viewed in Table
3.5, which shows adjusted views of the displacements for each structure generated
by the SIMP and BESO methods.

3.3.3 Euler Critical Load Analysis

From first glances in Figure 3.9, it seems as though that the SIMP vastly outper-
formed the BESO method in terms of Euler critical load in volume fractions between
45-55% as seen in Figure 3.8b. In contrast, the BESO slightly outperforms the SIMP
method from 15-35% for Euler critical loads. This helps support the idea that the
BESO method is better at lower volume fractions for the cantilever beam design in
comparison to the SIMP method. However from Figure 3.9, we see that the BESO
method is very close in performance to the SIMP at the 15% volume fraction. This

may be explained by the thin connection as seen in the 15% volume fraction BESO
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Comparison of Euler Critical Load - BESO and SIMP
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Figure 3.9: Euler Critical Load for each TO method and volume fraction. It
is observed that the SIMP method vastly outperformed the BESO methods in terms of
Euler critical load at higher volume fractions of 45-55%.

Euler

TO Method | Critical Load
Vol. Frac. (kN)
BESO - 15% 3811
SIMP - 15% 3453
BESO - 25% 7844
SIMP - 25% 6162
BESO - 35% 7596
SIMP - 35% 3739
BESO - 45% 14416
SIMP - 45% 33000
BESO - 55% 25698
SIMP - 55% 41563

Table 3.6: Euler Critical Load. The volume BESO barely held more weight than the
SIMP method at lower volume fraction, however the SIMP method vastly outperformed
the BESO method at higher volume fractions.
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design, where the maximum stress is higher than that of the SIMP method, which
may have caused it to prematurely break. This thin connection could be a result of
voxel to mesh conversion, however there is still room for speculation in which will

be discussed in the next section.
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4

Conclusion

4.1 Discussion

4.1.1 Finite Element Analysis

From the results listed in Section 3.1 we saw that the FEA software used by the
BESO method to calculate the displacements in the cantilever beam had performed
similarly to the Timoshenko analytic solution derived from Euler beam theory. The
error in the FEA solution ranged from 4.28 x 107!* —4.65 x 10~ m. This translated
to an average of 16.50% relative error between the analytic solution and the FEA
Lagrange shape function solution. Although this is not ideal, it served its purpose
for the computational experiment. In speculation, this comparison is in itself an
approximation through comparison of a 2D and 3D model. Therefore, we might
have seen the solution align more closely if we compared this software with a 3D

analytic solution.

4.1.2 Optimization Processes

From the optimization processes, we ultimately saw that the SIMP converged much
faster than the BESO method. This was ultimately due to the evolutionary rate
that was chosen for the BESO method in which caused it to subtract material off
at a slower rate, whereas the SIMP method subtracted material at a variable rate
based upon the relationship described in Equation 2.8. We saw that overall the
optimized structures converged to relatively similar structures, with overarching
FEATURES and an I-beam shaped back. From this we qualitatively viewed how
each method chose to subtract material. The BESO decided to take smaller cuts
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from the interior material and subtract material from the top, whereas the SIMP
method subtracted much of the material from the interior and left one big gap. This
resulted in more material on top of the structure. This suggests that the SIMP may
have prematurely subtracted material. We also noticed that the BESO suffered from

some minor asymmetries in the final structure.

4.1.3 Static Load Analysis

From what we saw in the static load analysis was that the BESO outperformed the
SIMP method in terms of stress, strain, displacement, and Euler critical load at
target volumes from 15-35% volume fraction — claiming itself the more “effective”
structure for low volume fractions. Alongside the BESO method, the SIMP method
outperformed the BESO method for volume fractions between 45-55% target vol-
umes — marking itself the more effective” structure for higher volume fractions.
However, these results are open to speculation. There is a certain amount of
uncertainty of how much effect the conversion between voxel and smoothed mesh
played a role into the performance of each structure. When each structure was
converted to a smoothed mesh, each structure may have been reduced by a small
volume. This was especially most notable in designs that had thinner connections
as seen in the lower volume fraction structures. This made certain aspects of the
design to encounter higher amounts of stress, which potentially could lead to the

structure to support less load.

4.2 Future Research

This was just a small fraction of many of the different tests we could have run in
order to compare the two TO methods. To get a better understanding between how
these two methods compare, a larger data set of many different types of structures
such as the bridge and the truss would have to be compared. This would help us
see if the observations we saw in the cantilever beam would hold true for other
structures or perhaps give us insight to whether or not a particular method is better
for a particular structure.

Improvements to the BESO software could be made to make it more memory
efficient. As of now it takes up so much of memory that it requires swap space to be
used — causing the software to take a very long time as well. An effort to convert

the software to use sparse matrices was undertaken, but the results did not come out
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quite as expected. Further investigation in finding a solution that supports sparse
matrices would make the software both more memory efficient and computationally

efficient.

4.3 Ending Notes

This thesis paper has shown that TO methods can provide unique geometries that
ultimately lead to highly optimized designs. Using computers and TO methods to
create designs will become more common as our manufacturing techniques become
cheaper in the future. There is a lot of work to be done before these methods are
more fully understood, but as we continue to study these methodologies a new era
of design will emerge — and perhaps we will find more things that we could have

never possibly imagined.
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Appendix A

Finite Element Analysis Lagrange

Interpolation

A.1 Shape Functions

Ni= (1= a)(1-B)1-7)
Ny = L1+ a)(1 - B)(1 —7)
Ny = 1+ a)(1+8)(1 —7)
Ni= (1= a)(1+8)(1 —7)
No = 5(1=a)(1 = B)(1 +7)
No = 5(1+a)(1 = B)(1 +7)
No = S(1+a)(1+ B)(1+7)
Nr = ()1 +B)(1 +7)

No = (1= a)(1 +5)(1 +7)

36



Appendix B

Poisson Surface Reconstructed

Structures

a) BESO (XZ) (Y+) b) BESO (XZ) (Y-)

) BESO (YZ) (X+) d) BESO (YZ) (X-)
e) BESO (XY) (Z+) f) BESO (XY) (Z-)

Figure B.1: 15% VF BESO Cantilever with PSR, Filter
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a)  SIMP (XZ) (Y+) b) SIMP (XZ) (Y-)

c) SIMP (YZ) (X+) d) SIMP (YZ) (X-)

e) SIMP (XY) (Z+) f) SIMP (XY) (Z-)

Figure B.2: 15% VF SIMP Cantilever with PSR Filter
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a) BESO (XZ) (Y+) b) BESO (XZ) (Y-)

¢) BESO (YZ) (X+) d) BESO (YZ) (X-)

e) BESO (XY) (Z+) f) BESO (XY) (Z-)

Figure B.3: 25% VF BESO Cantilever with PSR Filter
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a) BESO (XZ) (Y+) b) BESO (XZ) (Y-)

¢) BESO (YZ) (X+) d) BESO (YZ) (X-)

e) BESO (XY) (Z+) f) BESO (XY) (Z-)

Figure B.4: 25% VF SIMP Cantilever with PSR Filter
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a) BESO (XZ) (Y+) b) BESO (XZ) (Y-)

¢) BESO (YZ) (X+) d) BESO (YZ) (X-)

e) BESO (XY) (Z+) f) BESO (XY) (Z-)

Figure B.5: 35% VF BESO Cantilever with PSR Filter
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a) BESO (XZ) (Y+) b) BESO (XZ) (Y-)

¢) BESO (YZ) (X+) d) BESO (YZ) (X-)

e) BESO (XY) (Z+) f) BESO (XY) (Z-)

Figure B.6: 35% VF SIMP Cantilever with PSR Filter
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a) BESO (XZ) (Y+) b) BESO (XZ) (Y-)

¢) BESO (YZ) (X+) d) BESO (YZ) (X-)

e) BESO (XY) (Z+) f) BESO (XY) (Z-)

Figure B.7: 45% VF BESO Cantilever with PSR Filter

43



a) BESO (XZ) (Y+) b) BESO (XZ) (Y-)

¢) BESO (YZ) (X+) d) BESO (YZ) (X-)

e) BESO (XY) (Z+) f) BESO (XY) (Z-)

Figure B.8: 45% VF SIMP Cantilever with PSR Filter
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b) BESO (XZ) (Y-)

a) BESO (X2Z) (Y+)

¢) BESO (YZ) (X+) d) BESO (YZ) (X-)
e) BESO (XY) (Z+) f) BESO (XY) (Z-)

Figure B.9: 55% VF BESO Cantilever with PSR Filter
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a) BESO (XZ) (Y+) b) BESO (XZ) (Y-)

¢) BESO (YZ) (X+) d) BESO (YZ) (X-)

e) BESO (XY) (Z+) f) BESO (XY) (Z-)

Figure B.10: 55% VF SIMP Cantilever with PSR Filter
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