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1

Introduction

For millenia, we as humans have created things — from the simple arrow that helped

us hunt our food, to the boats that carried us across seas, and now the spacecraft

that will carry us to space. We as humans have come a long way and we are always

looking to improve the things we create. Traditionally, the method in which we

create things has been pretty similar for the past few centuries — we come up with

an idea, we design it, and test it in some way.1 This process is outdated and often

times, things could have been designed better. So how can we improve upon this

process? Is there a way to use software to ultimately help us create the “most

optimal” solution for a design that relies on a certain set of criterion?

The answer is yes. There is an emerging technique, known as topology opti-

mization (TO), which does exactly that. TO methods essentially allow us to take

a certain set of criterion, such as: a target volume, boundary constraints, and load

information to ultimately create the most “optimal” design for a part. Using the

criterion, TO methods can redistribute a design’s material layout in order to con-

form to the requirements specified by the engineer, while enhancing certain aspects

of the design, such as structural stiffness. (Xia, 2018b). TO is still a rather new con-

cept, with most development taking place in the past few decades. However, with

new manufacturing techniques, such as 3D printing, many engineers are ditching the

“traditional” way of design and moving to TO methods in order to produce highly

efficient designs that are lighter and will perhaps be cheaper to produce in the fu-

ture. TO methodology has been proven to be especially important in the aerospace

industry, as it costs anywhere from $5,000.00-10,000.00 to send one pound up into

1There has been improvements with the emergence of CAD software, but it is relatively a similar
process — you come up with an idea, model it, simulate and test, and repeat the process until the
design meets the constraints.
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Figure 1.1: AutoDesk moon lander for NASA mission (Leonard, 2018). The
organic cells cut from the moon lander provide a 30% mass reduction in comparison to
old moon lander designs, which would never had been possible through human design.

space. AutoDesk has recently taken an initiative to build software for this technique

in order to produce the most economical parts for the aerospace industry.2 Seen in

Figure 1.1, one can see a moon lander design generated by AutoDesk’s software.

You may notice that the structure is organic-like. These organic-like cells that are

cut from structure have effectively allowed AutoDesk to reduce the mass of the tra-

ditional moon-lander by approximately 30%. This lead to a massive cost reduction

into sending this piece into space.

There are several different methods in TO in which could have helped accom-

plished a structure like Figure 1.1, and therefore it is important to study how dif-

ferent TO methods compare to one another in order find the “best” solution. This

paper explores a comparative analysis between the resulting cantilever designs from

two different finite-element analysis based TO methods: the solid isotropic with

material penalization (SIMP) method and the bi-directional evolutionary structure

optimization (BESO) method. Each method will be utilized in order to generate a

design for a cantilever beam at several different volume fractions. The paper shall

then highlight which method produces a more “effective” cantilever beam struc-

ture by conducting static load scenarios using driving parameters such as structure

displacement, stress, strain, and Euler critical load. With this information, we

can ultimately use physics in order to help aide us in understanding how each TO

method performs. In the following subsections, a background in stress, strain, and

finite element analysis will be given to help the reader better understand the results

in following sections.

2AutoDesk more realistically uses what is known as “generative adversarial networks” — a form
of neural network that is fueled on topology optimization data.
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Figure 1.2: Surface forces: pressure, tension, shear. There are three different surface
forces in which include: pressure, tension, and shear. Pressure acts normally inward to the
surface, tension acts normally outward to the surface, and shear acts tangentially upon
the surface.

1.1 Stress and Strain

In order to better understand the underlying physics of these structures, a back-

ground in material stress and strain is needed. In typical statics problems a structure

is often analyzed when a load is set upon it in a particular location. These loads

act upon the surface of the structure and are otherwise known as surface forces.

These surface forces are distributed over a given area of the structure and produce

what is known as stress. There are three different surfaces forces that cause stress,

which include: pressure, tension, and shear. These are illustrated in Figure 1.2. The

relationship between surface forces and area can be expressed by Equation 1.1 to

give us the equation of stress, denoted by σ, where Fsurface is the force acting on

the surface and A is the area of that surface.

σ =
Fsurface
A

(1.1)

As surface forces act upon the structure, they cause deformations that lead to

the structure either stretching or compressing in a particular direction. In order to

quantify these deformations we look at the fractional change in the dimensions of the

structure, otherwise known as strain, denoted by ε. For three-dimensional systems,

we typically look at the overall change in the volumetric dimensions of the body

or structure. Equation 1.2 represents this relationship, where ∆V is the change in

volume of the body and V is the volume of the body. (Taylor, 2005).

ε =
∆V

V
(1.2)
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The relationship between stress and strain represents a form of Hooke’s Law,

where ε represents the displacement and σ represents the restoring force over an

area of material. This is represented below in Equation 1.3, which describes how

the ratio between stress and strain form what is known as the elastic modulus —

the measure of the ability of a material to withstand changes in dimensions when

put under stress. The elastic modulus is known by different names based on which

type of surface force is acting on the system: young’s modulus for tensile stress,

bulk modulus for compression stress, and shear modulus for shear stress.

E =
σ

ε
(1.3)

In statics problems we also look at the strain energy density, the amount of

work per unit volume in which the structure does in resistance to the load set upon

it. This takes on a very similar form to the potential energy of a spring, as seen in

Equation 1.4 and is calculated by TO methods in order to quantify the deformations

in either an element or the total structure. This ultimately is used to drive the TO

method’s process of removing material from the design. This is extremely crucial,

as it helps determine where to redistribute material on the structure in order to

maximize stiffness - the measure of resistance to deformations caused by surface

forces.

ψ(ε) =
1

2
Eε2 (1.4)

1.2 Finite Element Analysis

Pivoting from the information given for stress and strain, we can now use these

metrics to determine how a structure performs. In order to determine these metrics,

we need to solve the system using what is known as finite element analysis (FEA).

FEA is a way of representing a system with infinitesimal elements. Each TO method

that is compared in this paper utilizes a grid system composed of what are known

as eight-node hexahedral elements (H8). An H8 element is illustrated in Figure 1.3.

Each node within the H8 element is able to move in the alpha, beta, and gamma

direction, giving each H8 element a total of twenty-four degrees of freedom. When

a load is placed on the structure, these nodes are displaced, causing the system to

deform. The way we calculate these nodal displacements is done through what is

known as, “the direct stiffness method”. We will ultimately use these displacements

9



Figure 1.3: Eight nodal coordinate system of hexahedral element. Hexahedral
elements are composed of six faces and eight nodes connected at each vertices. A common
way we represent the state of these nodes is by comparing them to what is known as the
natural coordinate system — centered at the origin of the element.

later in order to calculate mean compliance, which will help inform the TO material

removal process.

The direct stiffness method works on the premise of Equation 1.5, which describes

a form of Hooke’s Law, where K is the stiffness tensor, u is the displacement tensor,

and f is force tensor.

Ku = f (1.5)

Each TO method in the beginning of it’s optimization process specifies a known force

at particular locations within the system. These values are then placed in the force

tensor in corresponding spots to where they are located in the system, otherwise

known as the “physical coordinate system”. In order to calculate the displacements,

according to Equation 1.5, we also need to formulate the stiffness matrix, which is

a system of linear equations that represents how each element resists in response

to an applied force. The way we represent the stiffness matrix for a H8 element is

given through Equation 1.6, where Bi represents the strain matrix, D represents the

elasticity matrix, BT
i represents the transposed strain matrix, and det(J) represents

the determinant of the Jacobian, which represents mapping between elements in the

“natural coordinate system”, as described in Figure 1.3, to the physical coordinate

system — the coordinate system of the entire system (Liu, 2014)

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BiDB
T
i det(J) dα dβdγ (1.6)
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To further dissect some of the components in Equation 1.6, we can represent these

variables through certain approximations. This is typical of most FEA methods and

although they do not utilize exact solutions to determine how a structure performs,

approximations to how the system acts is sufficient enough for us to generalize

different types of scenarios. In order to define the strain matrix of an H8 element,

we use what is known as “Lagrange shape functions”. Shape functions are functions

that help interpolate a solution between each nodal point in the element in the

natural coordinate system. The software written for the BESO method in future

sections, relies on linear interpolation, as expressed by the functions in Appendix A.

By looking at the change of these shape functions with respect to the α, β, and γ

directions, we ultimately extrapolate the strain matrix through the approximation

as described in Equation 1.7 (Liu, 2014).3

Be =



dN1

dα
0 0 ... dN8

dα
0 0

0 dN1

dα
0 ... 0 dN8

dα
0

0 0 dN1

dα
... 0 0 dN8

dα
dN1

dβ
dN1

dα
0 ... dN8

dβ
dN8

dα
0

0 dN1

dγ
dN1

dβ
... 0 dN8

dγ
dN8

dβ
dN1

dγ
0 dN1

dα
... dN8

dγ
0 dN8

dα


(1.7)

In order to formulate Equation 1.6, we also need the elasticity matrix, which is

defined by the material properties of the system and Poisson’s ratio. For an H8

element, this is given by Equation 1.8, where E represents the elastic modulus and

ν is Poisson’s ratio (Liu, 2014). The Poisson ratio factors account for the ratio of

the proportional decrease in a lateral measurement to the proportional increase in

length of a particular direction for a material that is elastically stretched.

D =
E

(1 + ν)(1 − 2ν)
X



1 − ν ν 0 0 0 0

ν 1 − ν ν 0 0 0

0 ν 1 − ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


(1.8)

3These six-dimensional matrices, as seen in the following equations, are represented in Voigt
notation, which translates symmetric tensors to six-dimensional vectors.
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In order to map the stiffness matrix from the natural coordinate system to the

physical coordinate system in Equation 1.6, the det (J) factor is used (Liu, 2014).

This is done by taking the location values from the physical coordinate system and

multiplying them with the change of the shape functions in each location of natural

coordinate system, represented by Equation 1.9. With all variables in Equation 1.6

defined, the stiffness matrix for the element is formulated. With this value, we can

then calculate the displacements of all the nodes in each element through Equation

1.5. These displacements will then be used to determine the mean compliance,

which will be used to inform the TO material removal process. This process will be

described in the following section.

J =


∂N1

∂α
∂N2

∂α
∂N3

∂α
∂N4

∂α
∂N5

∂α
∂N6

∂α
∂N7

∂α
∂N8

∂α

∂N1

∂β
∂N2

∂β
∂N3

∂β
∂N4

∂β
∂N5

∂β
∂N6

∂β
∂N7

∂β
∂N8

∂β

∂N1

∂γ
∂N2

∂γ
∂N3

∂γ
∂N4

∂γ
∂N5

∂γ
∂N6

∂γ
∂N7

∂γ
∂N8

∂γ





x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

x6 y6 z6

x7 y7 z7

x8 y8 z8


(1.9)
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2

Topology Optimization

2.1 Overview of Topology Optimization

This section shall give an overview of the SIMP and BESO TO methods to give a

better understanding of how each method redistributes material based on FEA re-

sults. All TO methods have two goals in mind when solving structural optimization

problems: find the minimum mean compliance and fit within a given target volume.

C =
N∑
i

1

2
uiKiu

T
i (2.1)

The mean compliance of the entire structure can be represented by equation 2.1,

where ui represents the elemental displacement matrix, Ki is the stiffness matrix of

the element, uTi is the transpose of the elemental displacement matrix, and N is the

number of elements in the structure Huang (2008). As we minimize this value —

there are fewer deformations in the structure, resulting in a stronger structure 1.

V ∗ −
N∑
i

Vixi = 0 (2.2)

Alongside this, TO methods also try to fit within a given target volume. This

value is specified at the beginning of the optimization process. Each TO methods

redistributes material in order to try to satisfy Equation 2.2, where V ∗ represents

the target volume, Vi represents the elemental volume, xi represents the design vari-

able that determines whether that element exists or not in the current design, and

N is the number of elements in the structure. TO Methods iterate until the volume

1Compliance essentially represents the strain energy density as described by Equation 1.4. This
tells us how much strain energy there is in the system.
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Figure 2.1: Two dimensional slice of filter radius (Wang et al., 2011). A filter
radius, commonly known as rmin encapsulates a certain amount of area or volume within
a structure. From the center of each element, TO methods look rmin distance out. Within
this circle or sphere, certain nodes with sensitivity values are encapsulated. Based on the
average of these values we can determine how stiff the system is in this region is.

condition is met and then continues to redistribute material in order to minimize

the compliance of the entire structure. TO methods typically determine how to

redistribute based on the principle of neighboring elements. At the beginning of

the optimization process, the user specifies what is known as the filter radius. This

value determines how far the optimization methods should look in terms of num-

ber of elements out. This helps determine whether certain regions in the structure

need more support or could potentially be cut. Figure 2.1 shows a two-dimensional

slice of what a filter radius looks like. During the removal or addition process in

topology optimization, each element looks a certain filter radius outward. In the

two-dimensional case we see through Figure 2.1 that certain nodes are encapsu-

lated in this region. We average each of these nodal sensitivity values to determine

how stressed this area is and use this information in the decision making process.

However, each topology optimization method redistributes material in its own way.

2.2 Solid Isotropic with Material Penalization (SIMP)

The SIMP method views the design variable, xi, as a continuous value, that allows

for what I call partial elements. The design variable is allowed to have a continuous

density value that follows the inequality expressed by Equation 2.3, where xmin is

14



the minimum element density allowed and xi is the element density.

0 < xmin ≤ xi ≤ 1 (2.3)

Any design variable that falls below the xmin value is removed from the design and

becomes known as a void element. Any design variable that converges to the value

1 becomes known as a solid element. Anything else in between is a partial element.

In order to determine these design variables at every iteration, the SIMP method

calculates sensitivity values. This is done by taking the derivative of the mean

compliance, such that

∂c

∂xi
− pxp−1

i uTi K
0
i ui (2.4)

where p represents a penalty factor (typically 2 or 3)2, xi represents the design

variable of the element, uTi represents the transposed displacement matrix of the

element, Ki represents the stiffness matrix of the element, and ui represents the

displacement matrix. Using this value, we can calculate the amount of volumetric

change in dimensions of the element by calculating the strain through Equation

2.5, where λ−1 is a Lagrangian multiplier determined through a bisection method

(M. P. Bendsøe, 1999).

Bi = λ−1 ∂c

∂xi
(2.5)

Using this change in mean compliance, we can then update the elements through

Equation 2.6, which represents the Optimality Criteria described by M. P. Bendsøe

(1999).

xN+1
i =


max(xmin, x

N
i −m) if xNi B

η
i ≤ max(xmin, x

N
i −m)

min(1, xNi +m) if min(1, xNi +m) ≤ xNi B
η
i

xNi B
η
i otherwise

(2.6)

where xNi represents the design variable at iteration N , m is the positive move

limit — the most the value can change per iteration, η represents a numerical damp-

ing coefficient (typically equal to 0.5), and Bi is elemental strain. With the sensi-

tivity values being based upon the change of compliance with respect to the design

variable, it has been noted by Huang (2008) to sometimes converge to local mini-

mums — which may cause for less than optimal designs.

2This intrinsically helps the design to a fully solid design.
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2.3 Bi-directional Evolutionary Structure Opti-

mization (BESO)

The bi-directional evolutionary structure optimization (BESO) is a bit different in

nature than the SIMP method. The BESO method was an adaptation from the

evolutionary structure optimization (ESO) method, which was first developed by

X. Y. Yang and Querin. (1999). The term “bi-directional” implies that material

can be both added and subtracted at the same time, meaning inefficient material is

removed from the design and material is added in places needed of more support.

This allows the method to redistribute material in the design where it may have

previously pre-maturely subtracted it. The BESO method also works on the premise

of sensitivity values. Each sensitivity value is the mean compliance divided by the

elemental volume, as seen in Equation 2.7

αi =
1

2

uTi Kiuix
p
i

Vi
(2.7)

ui is the displacement matrix of the element, uTi is the transposed displacement

matrix of the element, and Ki is the stiffness matrix for that given element, xi is

the design variable, and p is the penalty factor (typically 2 or 3) used for helping

the design converge. These sensitivity values are compared to a threshold value, ath,

the mean value of sensitivity values across the nodes within the given filter radius

of the element. If the design variable is 1, then the element exists in the design,

if the element is 0.001 it has the potential to to be added back into the design, if

the design variable is less than 0.001 it is completely removed from the design —

continuously becoming smaller and smaller each iteration.

xi =

1 if ai > ath

0.001 if ai ≤ ath
(2.8)

This method continuously subtracts material from the structure at an evolutionary

rate, the rate at which elements are removed from the structure. Once the structure

is at its target volume, V ∗, it still can continue to redistribute material without

changing the overall volume of the structure, adding and subtracting material for

optimum results. However, it has been noted in literature that by adding a penal-

ization factor to the design variable causes for more convergent solutions (Huang,

2008).
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3

Computational & Analytic Results

3.1 Validation of Finite Element Analysis

Figure 3.1: Cantilever beam validation test setup. (Augarde, 2007) This represents
a two-dimensional model of the Timoshenko cantilever beam described by Auguarde. The
beam consists of length, L, a height, D, and shear force, P , in the downwards direction.

For the structures generated by the BESO method, FEA software was written in

order to define the displacements, stress, and strain in the system. The FEA software

works on the premise of Lagrange shape functions, as described in Section 1.3. In

order to validate this approximation, we will compare the displacement results with

an analytic solution of the cantilever beam as described by Augarde (2007). The

cantilever described by Augarde represents a two-dimensional cantilever beam of

depth, D, length, L, and unit thickness as seen in Figure 3.1. A load, P , is set upon

the end of the beam in order to deform the structure. To quantify the deformation in

the y-direction, we look at uy, as described in Equation 3.1, where ν is Poisson’s ratio

and I is the moment of area. This beam theory is derived from the Euler-Bernoulli

Beam Theorem.

uy = − P

6EI

[
3νy2(L− x) + (4 + 5ν)

D2x

4
+ (3L− x)x2

]
(3.1)
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Figure 3.2: Validation test scenario: FEA Setup. The y-displacement from the
top row of nodes that are centered with the load will be used to compare with the y-
displacement of the Timoshenko beam model.

The FEA software written for the BESO method solves only three-dimensional

systems. In order to compare this to the Timoshenko model, we shall use a simple

test scenario as shown in Figure 3.2. This Figure shows a cantilever beam under a

given load composed of 80 elements (20 x 2 x 2). Using this model, we can compare

the y-displacements to the Timoshenko beam model to see how accurate the FEA

solution is. To give some physical context, the defined parameters that were used

in this validation test is given below in Table 3.1, which describes a steel cantilever

beam with a given load of 1000 N set up on it.

Length (mm) 20
Depth (mm) 2

Load (N) 1000
Elastic Modulus ( N

m2 ) 200e9
Poisson’s Ratio (ν) 0.4

Table 3.1: Validation test parameters: FEA vs. Analytic Solution

Under this scenario, it was seen in Figure 3.2 that the displacements predicted

by the FEA software had deflected further in the y-direction in comparison to the

Timoshenko analytic solution. This tells us that although the FEA predicted the

correct sort of shape of the displacement and direction in which the beam shall be

displaced, it over approximated the amount of displacement in the system. As you

get further towards the end of the beam, the error margin of this approximation

continues to increase.1

1Although the FEA software has a significant error margin in comparison to the analytic solu-
tion, it should suffice for the optimization methods.
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Figure 3.3: Y-displacement comparison of analytic solution and FEA solution.
This shows the displacement of a cantilever beam from both the Auguarde analytic solution
compared to the FEA solution as it bends in the y-direction. From the comparison, we see
that the minimum error in the FEA approximation is 4.28 × 10−11 m and the maximum
error is 4.65 × 10−9 m. Relative to the solution this error in displacement ranges from
3.93% to 27.18%, with the average relative error being 16.50%.

3.2 Topology Optimization Results

To compare the SIMP and BESO method fairly, a common scenario shall be used to

design a cantilever beam. The common parameters for this validation scenario can

be seen in Table 3.2. We will compare several different structures at various volume

fractions in Section 3.3, but for the sake of brevity this paper shall only discuss the

optimization process of structures generated with a target volume of 15%. For each

TO method, mean compliance over time shall be analyzed to how effective each

method is during its optimization period. This analysis shall show pivotal changes

in design at particular iterations to compare each method during its optimization

process.

Length 40
Width 12
Height 20

Target Volume 15%
Elastic Modulus 200e9

Filter radius 1.5

Table 3.2: Design scenario: Common initial parameters
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3.2.1 SIMP Method Optimization Results

(a) Iteration 15 (b) Iteration 25 (c) Iteration 35 (d) Iteration 50

Figure 3.4: SIMP Method Optimization Process. The optimization process was
completed relatively quickly — converging to a solution in less than fifty iterations. From
the graph, it shows the method was relatively conservative when subtracting material in
the first half of the optimization process, until it quickly subtracts a lot of material. This is
due to the move limit being fixed for the first fifteen iterations of the optimization process
— preset by the ToPy (Hunter, 2009). The final structure had a mean compliance of 9.16
Nmm, resulting in a structure as seen in Figure d.

Figure 3.4 shows the optimization process results for the SIMP method that

was generated using the ToPy Python library (Hunter, 2009). For each iteration,

a small percentage of material is subtracted from the overall design based upon

the change in mean compliance, as described in Section 2.3. In the beginning of

the optimization process, one notices that the overall change in volume fraction is

relatively small. However, as we see from point b to point c in Figure 3.4 there is

a rapid change in the volume fraction, where the overall change in volume is quite

high — this corresponded to a rise in compliance. As the process converged to the

target volume we see the mean compliance becomes minimized. Higher resolution

multi-dimensional images of this structure can be seen in Section 3.2.3.
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3.2.2 BESO Method Optimization Results

(a) Iteration 30 (b) Iteration 81 (c) Iteration 137 (d) Iteration 188

Figure 3.5: BESO Method Optimization Process. The BESO method took longer
to come to an optimal solution — 188 iterations based off an evolutionary rate of 1%
volume fraction per iteration. The resulting mean compliance was 9.03 Nmm, resulting in
a structure that looks similar to Figure d. This behavior in the BESO method is consistent
with literature described by Evolutionary Topology Optimization of Continuum Structures
(Huang, 2008), such that as volume fraction decreases, mean compliance increases.

Figure 3.5 shows the optimization process for the BESO method that was gen-

erated by software, which can be found at this link. This process is a little more

straightforward in comparison to the SIMP method, as the volume fraction is deter-

mined by a fixed evolutionary rate. This means instead of determining how much

material to subtract from the structure based on the change in mean compliance

of the structure, it subtracts material at fixed rate. However, instead of just sub-

tracting material like the SIMP method, the BESO method redistributes or “adds”

material to support weaker areas, so long as the total volume fraction is reduced

by the evolutionary rate. This feature is not inherent to the SIMP method, which

might prematurely subtract material in areas that might prove to be weak in future

iterations.
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3.2.3 3D Voxel Renderings of SIMP vs. BESO

Figure 3.6: Comparison of SIMP and BESO 3D Voxel Renderings The resulting
structures have relatively similar features, including an overarching structure as seen in
Figure a, b, g, and h. However, we see that the SIMP method more aggressively subtracted
material from the interior portions of it’s design, leaving more material on the top and
bottom of the design as seen in Figures e , f , k, and l . Both structures had I-beam shaped
back features — as seen in Figures c and d — this is reassuring that human design isn’t
that bad. It is also noted that the BESO method produced slightly asymmetrical designs
most notably in front and back views.
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3.2.4 Qualitative Discussion of BESO vs. SIMP Results

From the TO results highlighted in Sections 3.2.1 and 3.2.2, we see that the TO

methods converged to relatively similar structures. Both structures had the same

overarching shape with material removed near the fixed portion of design as seen

in Figure 3.6a, 3.6b, 3.6g, and 3.6h. Both structures reduced to a I-beam shaped

structure near the back of the design as seen in Figure 3.6c and 3.6d. This is quite

relieving to see that human design matches what these methods generate. Each

structure has interior cuts in order to reduce volume, however each method did it

in its own way. The BESO method seems to make smaller cuts and remove more

material from the top of the structure, whereas the SIMP method subtracted a lot

more interior material in the interior portions of structure causing a bigger gap. The

BESO method had small asymmetries as seen in Figure 3.6j and 3.6d. Each facet of

these designs will be analyzed in further sections to determine whether each method

made the correct decision in redistributing material in specific areas.

3.3 Static Load Analysis of SIMP vs. BESO

In order to fairly compare each structure generated by the SIMP and BESO method-

ologies, a known finite element analysis suite, AutoDesk, was used to simulate static

load scenarios. In order to create a valid mesh in AutoDesk, each structure had to

be modified to be a smoothed surface. This was done by applying a Poisson Surface

Reconstruction (PSR) filter. The modified structures can be seen Appendix B and

can be compared with the voxel renderings as seen in Figure 3.5. Although it’s not

ideal to compare modified structures, a large effort was put into ensuring the struc-

ture’s design was preserved. Each structure underwent a static load for the scenario

that it was designed for, as described in 3.2. From this analysis, a comparison of the

set of criterion below in the list will be utilized to determine which TO methodology

produced a better structure.

1. Von Mises Stress

2. Strain

3. Displacement

4. Euler Critical Load
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TO Method
Vol. Frac.

Max
Strain

Avg.
Strain

Max
Stress
(MPa)

Avg.
Stress
(MPa)

Max
Displacement

(mm)

Avg.
Displacement

(mm)
BESO - 15% 3.28E-5 3.08E-6 4.392 0.561 4.89E-3 1.39E-3
SIMP - 15% 2.23E-5 5.30E-6 3.988 0.764 5.65E-3 2.35E-3
BESO - 25% 2.80E-5 2.91E-6 3.687 0.476 3.16E-3 9.21E-4
SIMP - 25% 1.85E-5 3.6E-6 2.526 0.612 4.60E-3 2.24E-3
BESO - 35% 1.19E-5 3.41E-6 1.735 0.477 3.47E-3 1.26E-3
SIMP - 35% 3.09E-5 3.49E-6 4.246 0.548 3.78E-3 1.70E-3
BESO - 45% 8.10E-6 2.52E-6 1.269 0.362 2.71E-3 9.24E-4
SIMP - 45% 1.35E-5 2.07E-6 1.803 0.308 2.20E-3 8.81E-4
BESO - 55% 1.18E-5 1.93E-6 1.641 0.273 2.23E-3 7.63E-4
SIMP - 55% 1.17E-5 1.19E-6 1.532 0.273 1.83E-3 7.2E-4

Table 3.3: Quantitative Results from Static Load Analysis This table represents
the results from the AutoDesk static load test for each method and volume fraction. From
initial glance it is evident that the BESO method outperforms the SIMP method in terms
of average stress, strain, and displacements for volume fractions below 35%, whereas the
SIMP outperforms the BESO method for volume fractions 45% and above.

The results from the static load scenarios are shown in Table 3.3. Each structure

generated by both the BESO and SIMP method were put under a 1000 N load, in

a similar fashion to the FEA validation scenario in Figure 3.2. Then each structure

was tested to its limits, until the structure buckled — giving us the Euler Critical

load. To conduct the simulation, each structure was converted to a mesh consisting

of 2,000 uniform faces for consistency. From initial glance, it seems as though each

structure for the most part linearly continues to improve in terms of stress, strain,

displacement — as we see these number effectively decrease as more material is

added to the structure. However, it must be noted that with the mesh conversion,

there may be some slight effects in the performance of the structure. We may

notice that specifically thin connections in the the lower volume fraction designs

may encounter higher areas of stress than they were in their voxel form. To further

investigate and understand the results listed in Table 3.3, color maps of stress, strain,

and displacement for each structure will be shown in the following sections. This

ultimately will help us understand where each structure is weakened and help us

determine if structural flaws could have influenced some of the quantitative results

as seen in Table 3.3.
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3.3.1 Von Mises Stress and Strain Analysis

Figure 3.7: Average Stress and Strain vs. Volume Fraction. The BESO method
showed high areas of stress in low volume fractions — particular in the thin connections.
However, on average it outperformed the SIMP method slightly for lower volume fractions.
We see the SIMP method do slightly better in higher volume fractions — both methods
have similar average stress for the 55% volume fraction optimization.

Table 3.4 shows the Von Mises stress map for each structure generated by the

BESO and SIMP methods at different target volumes. With these stress maps, we

can view where the structure is weakest. One may notice that the greatest amount

of stress across the structures are the thin connections, most notable in the smaller

volume fractions of the SIMP and BESO design structures. It shall be noted that

when these structures are converted to a mesh from the PSR structures, they often

are reduced by small volume. This may lead to connections to become thinner than

they were in the original design. This causes the structure in these areas to feel

higher amounts of stress than they normally would.

We can also look at the average amount of stress across each structure. If we

plot the average Von Mises stress values for each structure at each volume fraction,

as seen in Figure 3.7, we can see that the BESO on average has a lower stress and

strain profile in comparison than the SIMP method for value fractions below the 45%

volume fraction mark. At this point, the SIMP on average performs better. This

potentially could tell us that the SIMP method works for higher volume fraction,

whereas the BESO works better for lower volume fractions.
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Volume Fraction SIMP BESO

15%

25%

35%

45%

55%

Table 3.4: BESO vs. SIMP Von Mises Stress Comparison. This table highlights
the stress simulation results from AutoDesk for each method and target volume done. We
see that there are notable areas within the structure that suffer higher amounts of stress,
namely in areas where connections are thin as seen in lower volume fractions.
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3.3.2 Displacement Analysis

Volume Fraction SIMP BESO

15%

25%

35%

45%

55%

Table 3.5: BESO vs. SIMP Average Displacement Comparison. This table shows
the results from the average displacement analysis results from AutoDesk. The SIMP at
lower volume fractions seemed to encounter higher values of displacement in comparison to
the BESO method. The SIMP however, seems to feel less displacement at higher volume
fractions.
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Figure 3.8: Average Displacement for each TO method and volume fraction.
The SIMP on average had much higher displacements for low volume fractions. However,
we start to see the SIMP perform very similar higher volume fractions.

Comparing the average displacements of the structures in Figure 3.8a we also

notice that the trend from the stress and strain graphs are consistent. However, the

shape of this graph is slightly different, which may suggest some sort of weighted

average was used in the calculations calculated by AutoDesk. The average displace-

ments are much larger for the SIMP method in comparison to the BESO method

for volume fraction of 15-35%. It is only until 45-55% where the SIMP barely per-

forms better than the BESO method. The displacements can be viewed in Table

3.5, which shows adjusted views of the displacements for each structure generated

by the SIMP and BESO methods.

3.3.3 Euler Critical Load Analysis

From first glances in Figure 3.9, it seems as though that the SIMP vastly outper-

formed the BESO method in terms of Euler critical load in volume fractions between

45-55% as seen in Figure 3.8b. In contrast, the BESO slightly outperforms the SIMP

method from 15-35% for Euler critical loads. This helps support the idea that the

BESO method is better at lower volume fractions for the cantilever beam design in

comparison to the SIMP method. However from Figure 3.9, we see that the BESO

method is very close in performance to the SIMP at the 15% volume fraction. This

may be explained by the thin connection as seen in the 15% volume fraction BESO
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Figure 3.9: Euler Critical Load for each TO method and volume fraction. It
is observed that the SIMP method vastly outperformed the BESO methods in terms of
Euler critical load at higher volume fractions of 45-55%.

TO Method
Vol. Frac.

Euler
Critical Load

(kN)
BESO - 15% 3811
SIMP - 15% 3453
BESO - 25% 7844
SIMP - 25% 6162
BESO - 35% 7596
SIMP - 35% 3739
BESO - 45% 14416
SIMP - 45% 33000
BESO - 55% 25698
SIMP - 55% 41563

Table 3.6: Euler Critical Load. The volume BESO barely held more weight than the
SIMP method at lower volume fraction, however the SIMP method vastly outperformed
the BESO method at higher volume fractions.

29



design, where the maximum stress is higher than that of the SIMP method, which

may have caused it to prematurely break. This thin connection could be a result of

voxel to mesh conversion, however there is still room for speculation in which will

be discussed in the next section.
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4

Conclusion

4.1 Discussion

4.1.1 Finite Element Analysis

From the results listed in Section 3.1 we saw that the FEA software used by the

BESO method to calculate the displacements in the cantilever beam had performed

similarly to the Timoshenko analytic solution derived from Euler beam theory. The

error in the FEA solution ranged from 4.28 × 10−11−4.65 × 10−9 m. This translated

to an average of 16.50% relative error between the analytic solution and the FEA

Lagrange shape function solution. Although this is not ideal, it served its purpose

for the computational experiment. In speculation, this comparison is in itself an

approximation through comparison of a 2D and 3D model. Therefore, we might

have seen the solution align more closely if we compared this software with a 3D

analytic solution.

4.1.2 Optimization Processes

From the optimization processes, we ultimately saw that the SIMP converged much

faster than the BESO method. This was ultimately due to the evolutionary rate

that was chosen for the BESO method in which caused it to subtract material off

at a slower rate, whereas the SIMP method subtracted material at a variable rate

based upon the relationship described in Equation 2.8. We saw that overall the

optimized structures converged to relatively similar structures, with overarching

FEATURES and an I-beam shaped back. From this we qualitatively viewed how

each method chose to subtract material. The BESO decided to take smaller cuts
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from the interior material and subtract material from the top, whereas the SIMP

method subtracted much of the material from the interior and left one big gap. This

resulted in more material on top of the structure. This suggests that the SIMP may

have prematurely subtracted material. We also noticed that the BESO suffered from

some minor asymmetries in the final structure.

4.1.3 Static Load Analysis

From what we saw in the static load analysis was that the BESO outperformed the

SIMP method in terms of stress, strain, displacement, and Euler critical load at

target volumes from 15-35% volume fraction — claiming itself the more ”effective”

structure for low volume fractions. Alongside the BESO method, the SIMP method

outperformed the BESO method for volume fractions between 45-55% target vol-

umes — marking itself the more ”effective” structure for higher volume fractions.

However, these results are open to speculation. There is a certain amount of

uncertainty of how much effect the conversion between voxel and smoothed mesh

played a role into the performance of each structure. When each structure was

converted to a smoothed mesh, each structure may have been reduced by a small

volume. This was especially most notable in designs that had thinner connections

as seen in the lower volume fraction structures. This made certain aspects of the

design to encounter higher amounts of stress, which potentially could lead to the

structure to support less load.

4.2 Future Research

This was just a small fraction of many of the different tests we could have run in

order to compare the two TO methods. To get a better understanding between how

these two methods compare, a larger data set of many different types of structures

such as the bridge and the truss would have to be compared. This would help us

see if the observations we saw in the cantilever beam would hold true for other

structures or perhaps give us insight to whether or not a particular method is better

for a particular structure.

Improvements to the BESO software could be made to make it more memory

efficient. As of now it takes up so much of memory that it requires swap space to be

used — causing the software to take a very long time as well. An effort to convert

the software to use sparse matrices was undertaken, but the results did not come out

32



quite as expected. Further investigation in finding a solution that supports sparse

matrices would make the software both more memory efficient and computationally

efficient.

4.3 Ending Notes

This thesis paper has shown that TO methods can provide unique geometries that

ultimately lead to highly optimized designs. Using computers and TO methods to

create designs will become more common as our manufacturing techniques become

cheaper in the future. There is a lot of work to be done before these methods are

more fully understood, but as we continue to study these methodologies a new era

of design will emerge — and perhaps we will find more things that we could have

never possibly imagined.
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Appendix A

Finite Element Analysis Lagrange

Interpolation

A.1 Shape Functions

N1 =
1

8
(1 − α)(1 − β)(1 − γ) (A.1)

N2 =
1

8
(1 + α)(1 − β)(1 − γ) (A.2)

N3 =
1

8
(1 + α)(1 + β)(1 − γ) (A.3)

N4 =
1

8
(1 − α)(1 + β)(1 − γ) (A.4)

N5 =
1

8
(1 − α)(1 − β)(1 + γ) (A.5)

N6 =
1

8
(1 + α)(1 − β)(1 + γ) (A.6)

N7 =
1

8
(1 + α)(1 + β)(1 + γ) (A.7)

N7 =
1

8
(1 + α)(1 + β)(1 + γ) (A.8)

N8 =
1

8
(1 − α)(1 + β)(1 + γ) (A.9)
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Appendix B

Poisson Surface Reconstructed

Structures

Figure B.1: 15% VF BESO Cantilever with PSR Filter
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Figure B.2: 15% VF SIMP Cantilever with PSR Filter
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Figure B.3: 25% VF BESO Cantilever with PSR Filter
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Figure B.4: 25% VF SIMP Cantilever with PSR Filter
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Figure B.5: 35% VF BESO Cantilever with PSR Filter
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Figure B.6: 35% VF SIMP Cantilever with PSR Filter
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Figure B.7: 45% VF BESO Cantilever with PSR Filter
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Figure B.8: 45% VF SIMP Cantilever with PSR Filter
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Figure B.9: 55% VF BESO Cantilever with PSR Filter
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Figure B.10: 55% VF SIMP Cantilever with PSR Filter
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